Quantum Chaos, Random Matrix Theory, and Statistical Mechanics in Two Dimensions - A Unified Approach
نویسندگان
چکیده
We present a theory where the statistical mechanics for dilute ideal gases can be derived from random matrix approach. We show the connection of this approach with Srednicki approach which connects Berry conjecture with statistical mechanics. We further establish a link between Berry conjecture and random matrix theory, thus providing a unified edifice for quantum chaos, random matrix theory and statistical mechanics. In the course of arguing for these connections, we also observe sum rules associated with the outstanding counting problem in the theory of Braid groups. PACS numbers:05.30.-d 05.45.+b Typeset using REVTEX 1
منابع مشابه
Quantum Fluctuations of Systems of Interacting Electrons in Two Spatial Dimensions
1 Abstract The random matrix ensembles (RME) of quantum statistical Hamiltonian operators, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Gini-bre RME), are applied to following quantum statistical systems: nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integr...
متن کامل”Non-Equilibrium Statistical Physics in Low Dimensions and
The random matrix ensembles (RME) of quantum statistical Hamiltonian operators, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Ginibre RME), are applied to following quantum statistical systems: nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integrability with...
متن کاملInvestigation of strong force influence on behavior of nuclear energy levels in Calcium and Titanium isotopes: Based on quantum chaos theory
The atomic nucleus is a complex many-body system that consists of two types of fermion (neutron and proton). They are in the strong interaction. The statistical properties of energy levels and influence of strong force between these fermions are well described by random matrix theory. Resonance of energy levels depends on the Hamiltonian symmetry placed in one of the GOE, GUE and GSE ensembles ...
متن کاملRandom Matrices and Chaos in Nuclear Spectra
We speak of chaos in quantum systems if the statistical properties of the eigenvalue spectrum coincide with predictions of random–matrix theory. Chaos is a typical feature of atomic nuclei and other self–bound Fermi systems. How can the existence of chaos be reconciled with the known dynamical features of spherical nuclei? Such nuclei are described by the shell model (a mean–field theory) plus ...
متن کامل1 5 Fe b 20 05 Fluctuations of Quantum Statistical Two - Dimensional Systems of Electrons
1 Abstract The random matrix ensembles (RME) of quantum statistical Hamiltonian operators, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Gini-bre RME), are applied to following quantum statistical systems: nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integr...
متن کامل